Kawamata-Viehweg vanishing as Kodaira vanishing for stacks
نویسندگان
چکیده
منابع مشابه
Kawamata–viehweg Vanishing as Kodaira Vanishing for Stacks
We associate to a pair (X, D), consisting of a smooth variety with a divisor D ∈ Div(X) ⊗ Q whose support has only normal crossings, a canonical Deligne–Mumford stack over X on which D becomes integral. We then reinterpret the Kawamata–Viehweg vanishing theorem as Kodaira vanishing for stacks.
متن کاملKawamata-Viehweg Vanishing on Rational Surfaces in Positive Characteristic
We prove that the Kawamata-Viehweg vanishing theorem holds on rational surfaces in positive characteristic by means of the lifting property to W2(k) of certain log pairs on smooth rational surfaces. As a corollary, the Kawamata-Viehweg vanishing theorem holds on log del Pezzo surfaces in positive characteristic.
متن کاملKawamata-viehweg Vanishing via Purity Properties of the Ultra-frobenius
Part 1 of this project is concerned with proving a relative version of the results in [1]. Consider the category of Lefschetz rings in which the objects are rings of equal characteristic zero which are realized as an ultraproduct of Noetherian rings of positive characteristic, and the morphisms between two such ultraproducts are given as ultraproducts of homomorphisms between the components. A ...
متن کاملSe p 20 09 Strongly Liftable Schemes and the Kawamata - Viehweg Vanishing in Positive Characteristic ∗
A smooth schemeX over a field k of positive characteristic is said to be strongly liftable, if X and all prime divisors on X can be lifted simultaneously over W2(k). In this paper, we give some concrete examples and properties of strongly liftable schemes. As an application, we prove that the Kawamata-Viehweg vanishing theorem in positive characteristic holds on any normal projective surface wh...
متن کاملNumerical dimension and a Kawamata-Viehweg-Nadel type vanishing theorem on compact Kähler manifolds
Let X be a compact Kähler manifold and let L be a pseudoeffective line bundle on X with singular metric φ. We first define a notion of numerical dimension of the pseudo-effective pair (L,φ) and then discuss the properties of it. We prove also a very general KawamataViehweg-Nadel type vanishing theorem on an arbitrary compact Kähler manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2005
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2005.v12.n2.a6